Linear Model Selection When Covariates Contain Errors
Xinyu Zhang,
Haiying Wang,
Yanyuan Ma and
Raymond J. Carroll
Journal of the American Statistical Association, 2017, vol. 112, issue 520, 1553-1561
Abstract:
Prediction precision is arguably the most relevant criterion of a model in practice and is often a sought after property. A common difficulty with covariates measured with errors is the impossibility of performing prediction evaluation on the data even if a model is completely given without any unknown parameters. We bypass this inherent difficulty by using special properties on moment relations in linear regression models with measurement errors. The end product is a model selection procedure that achieves the same optimality properties that are achieved in classical linear regression models without covariate measurement error. Asymptotically, the procedure selects the model with the minimum prediction error in general, and selects the smallest correct model if the regression relation is indeed linear. Our model selection procedure is useful in prediction when future covariates without measurement error become available, for example, due to improved technology or better management and design of data collection procedures. Supplementary materials for this article are available online.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1219262 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1553-1561
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1219262
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().