Estimation and Inference of Quantile Regression for Survival Data Under Biased Sampling
Gongjun Xu,
Tony Sit,
Lan Wang and
Chiung-Yu Huang
Journal of the American Statistical Association, 2017, vol. 112, issue 520, 1571-1586
Abstract:
Biased sampling occurs frequently in economics, epidemiology, and medical studies either by design or due to data collecting mechanism. Failing to take into account the sampling bias usually leads to incorrect inference. We propose a unified estimation procedure and a computationally fast resampling method to make statistical inference for quantile regression with survival data under general biased sampling schemes, including but not limited to the length-biased sampling, the case-cohort design, and variants thereof. We establish the uniform consistency and weak convergence of the proposed estimator as a process of the quantile level. We also investigate more efficient estimation using the generalized method of moments and derive the asymptotic normality. We further propose a new resampling method for inference, which differs from alternative procedures in that it does not require to repeatedly solve estimating equations. It is proved that the resampling method consistently estimates the asymptotic covariance matrix. The unified framework proposed in this article provides researchers and practitioners a convenient tool for analyzing data collected from various designs. Simulation studies and applications to real datasets are presented for illustration. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1222286 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1571-1586
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1222286
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().