Network Cross-Validation for Determining the Number of Communities in Network Data
Kehui Chen and
Jing Lei
Journal of the American Statistical Association, 2018, vol. 113, issue 521, 241-251
Abstract:
The stochastic block model (SBM) and its variants have been a popular tool for analyzing large network data with community structures. In this article, we develop an efficient network cross-validation (NCV) approach to determine the number of communities, as well as to choose between the regular stochastic block model and the degree corrected block model (DCBM). The proposed NCV method is based on a block-wise node-pair splitting technique, combined with an integrated step of community recovery using sub-blocks of the adjacency matrix. We prove that the probability of under-selection vanishes as the number of nodes increases, under mild conditions satisfied by a wide range of popular community recovery algorithms. The solid performance of our method is also demonstrated in extensive simulations and two data examples. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1246365 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:521:p:241-251
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1246365
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().