ECA: High-Dimensional Elliptical Component Analysis in Non-Gaussian Distributions
Fang Han and
Han Liu
Journal of the American Statistical Association, 2018, vol. 113, issue 521, 252-268
Abstract:
We present a robust alternative to principal component analysis (PCA)—called elliptical component analysis (ECA)—for analyzing high-dimensional, elliptically distributed data. ECA estimates the eigenspace of the covariance matrix of the elliptical data. To cope with heavy-tailed elliptical distributions, a multivariate rank statistic is exploited. At the model-level, we consider two settings: either that the leading eigenvectors of the covariance matrix are nonsparse or that they are sparse. Methodologically, we propose ECA procedures for both nonsparse and sparse settings. Theoretically, we provide both nonasymptotic and asymptotic analyses quantifying the theoretical performances of ECA. In the nonsparse setting, we show that ECA’s performance is highly related to the effective rank of the covariance matrix. In the sparse setting, the results are twofold: (i) we show that the sparse ECA estimator based on a combinatoric program attains the optimal rate of convergence; (ii) based on some recent developments in estimating sparse leading eigenvectors, we show that a computationally efficient sparse ECA estimator attains the optimal rate of convergence under a suboptimal scaling. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1246366 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:521:p:252-268
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1246366
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().