The Effect of Probing “Don’t Know” Responses on Measurement Quality and Nonresponse in Surveys
Jouni Kuha,
Sarah Butt,
Myrsini Katsikatsou and
Chris J. Skinner
Journal of the American Statistical Association, 2018, vol. 113, issue 521, 26-40
Abstract:
In survey interviews, “Don’t know” (DK) responses are commonly treated as missing data. One way to reduce the rate of such responses is to probe initial DK answers with a follow-up question designed to encourage respondents to give substantive, non-DK responses. However, such probing can also reduce data quality by introducing additional or differential measurement error. We propose a latent variable model for analyzing the effects of probing on responses to survey questions. The model makes it possible to separate measurement effects of probing from true differences between respondents who do and do not require probing. We analyze new data from an experiment, which compared responses to two multi-item batteries of questions with and without probing. In this study, probing reduced the rate of DK responses by around a half. However, it also had substantial measurement effects, in that probed answers were often weaker measures of constructs of interest than were unprobed answers. These effects were larger for questions on attitudes than for pseudo-knowledge questions on perceptions of external facts. The results provide evidence against the use of probing of “Don’t know” responses, at least for the kinds of items and respondents considered in this study. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1323640 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:521:p:26-40
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1323640
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().