EconPapers    
Economics at your fingertips  
 

Conditional Modeling of Longitudinal Data With Terminal Event

Shengchun Kong, Bin Nan, John D. Kalbfleisch, Rajiv Saran and Richard Hirth

Journal of the American Statistical Association, 2018, vol. 113, issue 521, 357-368

Abstract: We consider a random effects model for longitudinal data with the occurrence of an informative terminal event that is subject to right censoring. Existing methods for analyzing such data include the joint modeling approach using latent frailty and the marginal estimating equation approach using inverse probability weighting; in both cases the effect of the terminal event on the response variable is not explicit and thus not easily interpreted. In contrast, we treat the terminal event time as a covariate in a conditional model for the longitudinal data, which provides a straightforward interpretation while keeping the usual relationship of interest between the longitudinally measured response variable and covariates for times that are far from the terminal event. A two-stage semiparametric likelihood-based approach is proposed for estimating the regression parameters; first, the conditional distribution of the right-censored terminal event time given other covariates is estimated and then the likelihood function for the longitudinal event given the terminal event and other regression parameters is maximized. The method is illustrated by numerical simulations and by analyzing medical cost data for patients with end-stage renal disease. Desirable asymptotic properties are provided. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1255637 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:521:p:357-368

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1255637

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:357-368