EconPapers    
Economics at your fingertips  
 

Bayesian Semiparametric Multivariate Density Deconvolution

Abhra Sarkar, Debdeep Pati, Antik Chakraborty, Bani K. Mallick and Raymond J. Carroll

Journal of the American Statistical Association, 2018, vol. 113, issue 521, 401-416

Abstract: We consider the problem of multivariate density deconvolution when interest lies in estimating the distribution of a vector valued random variable X but precise measurements on X are not available, observations being contaminated by measurement errors U. The existing sparse literature on the problem assumes the density of the measurement errors to be completely known. We propose robust Bayesian semiparametric multivariate deconvolution approaches when the measurement error density of U is not known but replicated proxies are available for at least some individuals. Additionally, we allow the variability of U to depend on the associated unobserved values of X through unknown relationships, which also automatically includes the case of multivariate multiplicative measurement errors. Basic properties of finite mixture models, multivariate normal kernels, and exchangeable priors are exploited in novel ways to meet modeling and computational challenges. Theoretical results showing the flexibility of the proposed methods in capturing a wide variety of data-generating processes are provided. We illustrate the efficiency of the proposed methods in recovering the density of X through simulation experiments. The methodology is applied to estimate the joint consumption pattern of different dietary components from contaminated 24 h recalls. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1260467 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:521:p:401-416

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1260467

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:401-416