EconPapers    
Economics at your fingertips  
 

Correlated Random Measures

Rajesh Ranganath and David M. Blei

Journal of the American Statistical Association, 2018, vol. 113, issue 521, 417-430

Abstract: We develop correlated random measures, random measures where the atom weights can exhibit a flexible pattern of dependence, and use them to develop powerful hierarchical Bayesian nonparametric models. Hierarchical Bayesian nonparametric models are usually built from completely random measures, a Poisson-process-based construction in which the atom weights are independent. Completely random measures imply strong independence assumptions in the corresponding hierarchical model, and these assumptions are often misplaced in real-world settings. Correlated random measures address this limitation. They model correlation within the measure by using a Gaussian process in concert with the Poisson process. With correlated random measures, for example, we can develop a latent feature model for which we can infer both the properties of the latent features and their dependency pattern. We develop several other examples as well. We study a correlated random measure model of pairwise count data. We derive an efficient variational inference algorithm and show improved predictive performance on large datasets of documents, web clicks, and electronic health records. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1260468 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:521:p:417-430

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1260468

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:417-430