EconPapers    
Economics at your fingertips  
 

BNP-Seq: Bayesian Nonparametric Differential Expression Analysis of Sequencing Count Data

Siamak Zamani Dadaneh, Xiaoning Qian and Mingyuan Zhou

Journal of the American Statistical Association, 2018, vol. 113, issue 521, 81-94

Abstract: We perform differential expression analysis of high-throughput sequencing count data under a Bayesian nonparametric framework, removing sophisticated ad hoc pre-processing steps commonly required in existing algorithms. We propose to use the gamma (beta) negative binomial process, which takes into account different sequencing depths using sample-specific negative binomial probability (dispersion) parameters, to detect differentially expressed genes by comparing the posterior distributions of gene-specific negative binomial dispersion (probability) parameters. These model parameters are inferred by borrowing statistical strength across both the genes and samples. Extensive experiments on both simulated and real-world RNA sequencing count data show that the proposed differential expression analysis algorithms clearly outperform previously proposed ones in terms of the areas under both the receiver operating characteristic and precision-recall curves. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1328358 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:521:p:81-94

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1328358

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:81-94