Estimating the Number of Sources in Magnetoencephalography Using Spiked Population Eigenvalues
Zhigang Yao,
Ye Zhang,
Zhidong Bai and
William F. Eddy
Journal of the American Statistical Association, 2018, vol. 113, issue 522, 505-518
Abstract:
Magnetoencephalography (MEG) is an advanced imaging technique used to measure the magnetic fields outside the human head produced by the electrical activity inside the brain. Various source localization methods in MEG require the knowledge of the underlying active sources, which are identified by a priori. Common methods used to estimate the number of sources include principal component analysis or information criterion methods, both of which make use of the eigenvalue distribution of the data, thus avoiding solving the time-consuming inverse problem. Unfortunately, all these methods are very sensitive to the signal-to-noise ratio (SNR), as examining the sample extreme eigenvalues does not necessarily reflect the perturbation of the population ones. To uncover the unknown sources from the very noisy MEG data, we introduce a framework, referred to as the intrinsic dimensionality (ID) of the optimal transformation for the SNR rescaling functional. It is defined as the number of the spiked population eigenvalues of the associated transformed data matrix. It is shown that the ID yields a more reasonable estimate for the number of sources than its sample counterparts, especially when the SNR is small. By means of examples, we illustrate that the new method is able to capture the number of signal sources in MEG that can escape PCA or other information criterion-based methods. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1341411 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:522:p:505-518
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1341411
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().