EconPapers    
Economics at your fingertips  
 

On Estimation of the Hazard Function From Population-Based Case–Control Studies

Li Hsu, Malka Gorfine and David Zucker

Journal of the American Statistical Association, 2018, vol. 113, issue 522, 560-570

Abstract: The population-based case–control study design has been widely used for studying the etiology of chronic diseases. It is well established that the Cox proportional hazards model can be adapted to the case–control study and hazard ratios can be estimated by (conditional) logistic regression model with time as either a matched set or a covariate. However, the baseline hazard function, a critical component in absolute risk assessment, is unidentifiable, because the ratio of cases and controls is controlled by the investigators and does not reflect the true disease incidence rate in the population. In this article, we propose a simple and innovative approach, which makes use of routinely collected family history information, to estimate the baseline hazard function for any logistic regression model that is fit to the risk factor data collected on cases and controls. We establish that the proposed baseline hazard function estimator is consistent and asymptotically normal and show via simulation that it performs well in finite samples. We illustrate the proposed method by a population-based case–control study of prostate cancer where the association of various risk factors is assessed and the family history information is used to estimate the baseline hazard function. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1356315 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:522:p:560-570

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1356315

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:560-570