Bayesian Regression Trees for High-Dimensional Prediction and Variable Selection
Antonio R. Linero
Journal of the American Statistical Association, 2018, vol. 113, issue 522, 626-636
Abstract:
Decision tree ensembles are an extremely popular tool for obtaining high-quality predictions in nonparametric regression problems. Unmodified, however, many commonly used decision tree ensemble methods do not adapt to sparsity in the regime in which the number of predictors is larger than the number of observations. A recent stream of research concerns the construction of decision tree ensembles that are motivated by a generative probabilistic model, the most influential method being the Bayesian additive regression trees (BART) framework. In this article, we take a Bayesian point of view on this problem and show how to construct priors on decision tree ensembles that are capable of adapting to sparsity in the predictors by placing a sparsity-inducing Dirichlet hyperprior on the splitting proportions of the regression tree prior. We characterize the asymptotic distribution of the number of predictors included in the model and show how this prior can be easily incorporated into existing Markov chain Monte Carlo schemes. We demonstrate that our approach yields useful posterior inclusion probabilities for each predictor and illustrate the usefulness of our approach relative to other decision tree ensemble approaches on both simulated and real datasets. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1264957 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:522:p:626-636
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1264957
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().