Efficient Functional ANOVA Through Wavelet-Domain Markov Groves
Li Ma and
Jacopo Soriano
Journal of the American Statistical Association, 2018, vol. 113, issue 522, 802-818
Abstract:
We introduce a wavelet-domain method for functional analysis of variance (fANOVA). It is based on a Bayesian hierarchical model that employs a graphical hyperprior in the form of a Markov grove (MG)—that is, a collection of Markov trees—for linking the presence/absence of factor effects at all location-scale combinations, thereby incorporating the natural clustering of factor effects in the wavelet-domain across locations and scales. Inference under the model enjoys both analytical simplicity and computational efficiency. Specifically, the posterior of the full hierarchical model is available in closed form through a pyramid algorithm operationally similar to Mallat’s pyramid algorithm for discrete wavelet transform (DWT), achieving for exact Bayesian inference the same computational efficiency—linear in both the number of observations and the number of locations—as for carrying out the DWT. In particular, posterior probabilities of the presence of factor contributions to functional variation are directly available from the pyramid algorithm, while posterior samples for the factor effects can be drawn directly from the exact posterior through standard (not Markov chain) Monte Carlo. We investigate the performance of our method through extensive simulation and show that it substantially outperforms existing wavelet-domain fANOVA methods in a variety of common settings. We illustrate the method through analyzing the orthosis data. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1286241 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:522:p:802-818
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1286241
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().