Residuals and Diagnostics for Ordinal Regression Models: A Surrogate Approach
Dungang Liu and
Heping Zhang
Journal of the American Statistical Association, 2018, vol. 113, issue 522, 845-854
Abstract:
Ordinal outcomes are common in scientific research and everyday practice, and we often rely on regression models to make inference. A long-standing problem with such regression analyses is the lack of effective diagnostic tools for validating model assumptions. The difficulty arises from the fact that an ordinal variable has discrete values that are labeled with, but not, numerical values. The values merely represent ordered categories. In this article, we propose a surrogate approach to defining residuals for an ordinal outcome Y. The idea is to define a continuous variable S as a “surrogate” of Y and then obtain residuals based on S. For the general class of cumulative link regression models, we study the residual’s theoretical and graphical properties. We show that the residual has null properties similar to those of the common residuals for continuous outcomes. Our numerical studies demonstrate that the residual has power to detect misspecification with respect to (1) mean structures; (2) link functions; (3) heteroscedasticity; (4) proportionality; and (5) mixed populations. The proposed residual also enables us to develop numeric measures for goodness of fit using classical distance notions. Our results suggest that compared to a previously defined residual, our residual can reveal deeper insights into model diagnostics. We stress that this work focuses on residual analysis, rather than hypothesis testing. The latter has limited utility as it only provides a single p-value, whereas our residual can reveal what components of the model are misspecified and advise how to make improvements. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1292915 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:522:p:845-854
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1292915
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().