EconPapers    
Economics at your fingertips  
 

The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method

Alexandre Bouchard-Côté, Sebastian J. Vollmer and Arnaud Doucet

Journal of the American Statistical Association, 2018, vol. 113, issue 522, 855-867

Abstract: Many Markov chain Monte Carlo techniques currently available rely on discrete-time reversible Markov processes whose transition kernels are variations of the Metropolis–Hastings algorithm. We explore and generalize an alternative scheme recently introduced in the physics literature (Peters and de With 2012) where the target distribution is explored using a continuous-time nonreversible piecewise-deterministic Markov process. In the Metropolis–Hastings algorithm, a trial move to a region of lower target density, equivalently of higher “energy,” than the current state can be rejected with positive probability. In this alternative approach, a particle moves along straight lines around the space and, when facing a high energy barrier, it is not rejected but its path is modified by bouncing against this barrier. By reformulating this algorithm using inhomogeneous Poisson processes, we exploit standard sampling techniques to simulate exactly this Markov process in a wide range of scenarios of interest. Additionally, when the target distribution is given by a product of factors dependent only on subsets of the state variables, such as the posterior distribution associated with a probabilistic graphical model, this method can be modified to take advantage of this structure by allowing computationally cheaper “local” bounces, which only involve the state variables associated with a factor, while the other state variables keep on evolving. In this context, by leveraging techniques from chemical kinetics, we propose several computationally efficient implementations. Experimentally, this new class of Markov chain Monte Carlo schemes compares favorably to state-of-the-art methods on various Bayesian inference tasks, including for high-dimensional models and large datasets. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1294075 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:522:p:855-867

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1294075

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:855-867