Semiparametric Ultra-High Dimensional Model Averaging of Nonlinear Dynamic Time Series
Jia Chen,
Degui Li,
Oliver Linton and
Zudi Lu
Journal of the American Statistical Association, 2018, vol. 113, issue 522, 919-932
Abstract:
We propose two semiparametric model averaging schemes for nonlinear dynamic time series regression models with a very large number of covariates including exogenous regressors and auto-regressive lags. Our objective is to obtain more accurate estimates and forecasts of time series by using a large number of conditioning variables in a nonparametric way. In the first scheme, we introduce a kernel sure independence screening (KSIS) technique to screen out the regressors whose marginal regression (or autoregression) functions do not make a significant contribution to estimating the joint multivariate regression function; we then propose a semiparametric penalized method of model averaging marginal regression (MAMAR) for the regressors and auto-regressors that survive the screening procedure, to further select the regressors that have significant effects on estimating the multivariate regression function and predicting the future values of the response variable. In the second scheme, we impose an approximate factor modeling structure on the ultra-high dimensional exogenous regressors and use the principal component analysis to estimate the latent common factors; we then apply the penalized MAMAR method to select the estimated common factors and the lags of the response variable that are significant. In each of the two schemes, we construct the optimal combination of the significant marginal regression and autoregression functions. Asymptotic properties for these two schemes are derived under some regularity conditions. Numerical studies including both simulation and an empirical application to forecasting inflation are given to illustrate the proposed methodology. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1302339 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:522:p:919-932
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1302339
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().