On the Long-Run Volatility of Stocks
Carlos M. Carvalho,
Hedibert F. Lopes and
Robert E. McCulloch
Journal of the American Statistical Association, 2018, vol. 113, issue 523, 1050-1069
Abstract:
In this article, we investigate whether or not the volatility per period of stocks is lower over longer horizons. Taking the perspective of an investor, we evaluate the predictive variance of k-period returns under different model and prior specifications. We adopt the state-space framework of Pástor and Stambaugh to model the dynamics of expected returns and evaluate the effects of prior elicitation in the resulting volatility estimates. Part of the developments includes an extension that incorporates time-varying volatilities and covariances in a constrained prior information set-up. Our conclusion for the U.S. market, under plausible prior specifications, is that stocks are less volatile in the long run. Model assessment exercises demonstrate the models and priors supporting our main conclusions are in accordance with the data. To assess the generality of the results, we extend our analysis to a number of international equity indices. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1407769 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1050-1069
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1407769
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().