EconPapers    
Economics at your fingertips  
 

On Recursive Bayesian Predictive Distributions

P. Richard Hahn, Ryan Martin and Stephen G. Walker

Journal of the American Statistical Association, 2018, vol. 113, issue 523, 1085-1093

Abstract: A Bayesian framework is attractive in the context of prediction, but a fast recursive update of the predictive distribution has apparently been out of reach, in part because Monte Carlo methods are generally used to compute the predictive. This article shows that online Bayesian prediction is possible by characterizing the Bayesian predictive update in terms of a bivariate copula, making it unnecessary to pass through the posterior to update the predictive. In standard models, the Bayesian predictive update corresponds to familiar choices of copula but, in nonparametric problems, the appropriate copula may not have a closed-form expression. In such cases, our new perspective suggests a fast recursive approximation to the predictive density, in the spirit of Newton’s predictive recursion algorithm, but without requiring evaluation of normalizing constants. Consistency of the new algorithm is shown, and numerical examples demonstrate its quality performance in finite-samples compared to fully Bayesian and kernel methods. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1304219 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1085-1093

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1304219

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1085-1093