EconPapers    
Economics at your fingertips  
 

Quasi-Likelihood Estimation of a Censored Autoregressive Model With Exogenous Variables

Chao Wang and Kung-Sik Chan

Journal of the American Statistical Association, 2018, vol. 113, issue 523, 1135-1145

Abstract: Maximum likelihood estimation of a censored autoregressive model with exogenous variables (CARX) requires computing the conditional likelihood of blocks of data of variable dimensions. As the random block dimension generally increases with the censoring rate, maximum likelihood estimation becomes quickly numerically intractable with increasing censoring. We introduce a new estimation approach using the complete-incomplete data framework with the complete data comprising the observations were there no censoring. We introduce a system of unbiased estimating equations motivated by the complete-data score vector, for estimating a CARX model. The proposed quasi-likelihood method reduces to maximum likelihood estimation when there is no censoring, and it is computationally efficient. We derive the consistency and asymptotic normality of the quasi-likelihood estimator, under mild regularity conditions. We illustrate the efficacy of the proposed method by simulations and a real application on phosphorus concentration in river water.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1307115 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1135-1145

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1307115

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1135-1145