A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes
Thomas A. Murray,
Ying Yuan and
Peter F. Thall
Journal of the American Statistical Association, 2018, vol. 113, issue 523, 1255-1267
Abstract:
Medical therapy often consists of multiple stages, with a treatment chosen by the physician at each stage based on the patient’s history of treatments and clinical outcomes. These decisions can be formalized as a dynamic treatment regime. This article describes a new approach for optimizing dynamic treatment regimes, which bridges the gap between Bayesian inference and existing approaches, like Q-learning. The proposed approach fits a series of Bayesian regression models, one for each stage, in reverse sequential order. Each model uses as a response variable the remaining payoff assuming optimal actions are taken at subsequent stages, and as covariates the current history and relevant actions at that stage. The key difficulty is that the optimal decision rules at subsequent stages are unknown, and even if these decision rules were known the relevant response variables may be counterfactual. However, posterior distributions can be derived from the previously fitted regression models for the optimal decision rules and the counterfactual response variables under a particular set of rules. The proposed approach averages over these posterior distributions when fitting each regression model. An efficient sampling algorithm for estimation is presented, along with simulation studies that compare the proposed approach with Q-learning. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1340887 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1255-1267
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1340887
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().