Edge Exchangeable Models for Interaction Networks
Harry Crane and
Walter Dempsey
Journal of the American Statistical Association, 2018, vol. 113, issue 523, 1311-1326
Abstract:
Many modern network datasets arise from processes of interactions in a population, such as phone calls, email exchanges, co-authorships, and professional collaborations. In such interaction networks, the edges comprise the fundamental statistical units, making a framework for edge-labeled networks more appropriate for statistical analysis. In this context, we initiate the study of edge exchangeable network models and explore its basic statistical properties. Several theoretical and practical features make edge exchangeable models better suited to many applications in network analysis than more common vertex-centric approaches. In particular, edge exchangeable models allow for sparse structure and power law degree distributions, both of which are widely observed empirical properties that cannot be handled naturally by more conventional approaches. Our discussion culminates in the Hollywood model, which we identify here as the canonical family of edge exchangeable distributions. The Hollywood model is computationally tractable, admits a clear interpretation, exhibits good theoretical properties, and performs reasonably well in estimation and prediction as we demonstrate on real network datasets. As a generalization of the Hollywood model, we further identify the vertex components model as a nonparametric subclass of models with a convenient stick breaking construction.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1341413 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1311-1326
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1341413
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().