EconPapers    
Economics at your fingertips  
 

Bayesian Inference in the Presence of Intractable Normalizing Functions

Jaewoo Park and Murali Haran

Journal of the American Statistical Association, 2018, vol. 113, issue 523, 1372-1390

Abstract: Models with intractable normalizing functions arise frequently in statistics. Common examples of such models include exponential random graph models for social networks and Markov point processes for ecology and disease modeling. Inference for these models is complicated because the normalizing functions of their probability distributions include the parameters of interest. In Bayesian analysis, they result in so-called doubly intractable posterior distributions which pose significant computational challenges. Several Monte Carlo methods have emerged in recent years to address Bayesian inference for such models. We provide a framework for understanding the algorithms, and elucidate connections among them. Through multiple simulated and real data examples, we compare and contrast the computational and statistical efficiency of these algorithms and discuss their theoretical bases. Our study provides practical recommendations for practitioners along with directions for future research for Markov chain Monte Carlo (MCMC) methodologists. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1448824 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1372-1390

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1448824

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1372-1390