Latent Variable Poisson Models for Assessing the Regularity of Circadian Patterns over Time
Sungduk Kim and
Paul S. Albert
Journal of the American Statistical Association, 2018, vol. 113, issue 523, 992-1002
Abstract:
Many researchers in biology and medicine have focused on trying to understand biological rhythms and their potential impact on disease. A common biological rhythm is circadian, where the cycle repeats itself every 24 hours. However, a disturbance of the circadian pattern may be indicative of future disease. In this article, we develop new statistical methodology for assessing the degree of disturbance or irregularity in a circadian pattern for count sequences that are observed over time in a population of individuals. We develop a latent variable Poisson modeling approach with both circadian and stochastic short-term trend (autoregressive latent process) components that allow for individual variation in the degree of each component. A parameterization is proposed for modeling covariate dependence on the proportion of these two model components across individuals. In addition, we incorporate covariate dependence in the overall mean, the magnitude of the trend, and the phase-shift of the circadian pattern. Innovative Markov chain Monte Carlo sampling is used to carry out Bayesian posterior computation. Several variations of the proposed models are considered and compared using the deviance information criterion. We illustrate this methodology with longitudinal physical activity count data measured in a longitudinal cohort of adolescents.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1379402 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:523:p:992-1002
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1379402
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().