Tracking the Impact of Media on Voter Choice in Real Time: A Bayesian Dynamic Joint Model
Bhuvanesh Pareek,
Pulak Ghosh,
Hugh N. Wilson,
Emma K. Macdonald and
Paul Baines
Journal of the American Statistical Association, 2018, vol. 113, issue 524, 1457-1475
Abstract:
Commonly used methods of evaluating the impact of marketing communications during political elections struggle to account for respondents’ exposures to these communications due to the problems associated with recall bias. In addition, they completely fail to account for the impact of mediated or earned communications, such as newspaper articles or television news, that are typically not within the control of the advertising party, nor are they effectively able to monitor consumers’ perceptual responses over time. This study based on a new data collection technique using cell-phone text messaging (called real-time experience tracking or RET) offers the potential to address these weaknesses. We propose an RET-based model of the impact of communications and apply it to a unique choice situation: voting behavior during the 2010 UK general election, which was dominated by three political parties. We develop a Bayesian zero-inflated dynamic multinomial choice model that enables the joint modeling of: the interplay and dynamics associated with the individual voter's choice intentions over time, actual vote, and the heterogeneity in the exposure to marketing communications over time. Results reveal the differential impact over time of paid and earned media, demonstrate a synergy between the two, and show the particular importance of exposure valence and not just frequency, contrary to the predominant practitioner emphasis on share-of-voice metrics. Results also suggest that while earned media have a reducing impact on voting intentions as the final choice approaches, their valence continues to influence the final vote: a difference between drivers of intentions and behavior that implies that exposure valence remains critically important close to the final brand choice. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1419134 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1457-1475
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1419134
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().