EconPapers    
Economics at your fingertips  
 

Modeling Tangential Vector Fields on a Sphere

Minjie Fan, Debashis Paul, Thomas C. M. Lee and Tomoko Matsuo

Journal of the American Statistical Association, 2018, vol. 113, issue 524, 1625-1636

Abstract: Physical processes that manifest as tangential vector fields on a sphere are common in geophysical and environmental sciences. These naturally occurring vector fields are often subject to physical constraints, such as being curl-free or divergence-free. We start with constructing parametric models for curl-free and divergence-free vector fields that are tangential to the unit sphere through applying the surface gradient or the surface curl operator to a scalar random potential field on the unit sphere. Using the Helmholtz–Hodge decomposition, we then construct a class of simple but flexible parametric models for general tangential vector fields, which are represented as a sum of a curl-free and a divergence-free components. We propose a likelihood-based parameter estimation procedure, and show that fast computation is possible even for large datasets when the observations are on a regular latitude–longitude grid. Characteristics and practical utility of the proposed methodology are illustrated through extensive simulation studies and an application to a dataset of ocean surface wind velocities collected by satellite-based scatterometers. We also compare our model with a bivariate Matérn model and a non-stationary bivariate global model. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1356322 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1625-1636

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1356322

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1625-1636