A Powerful Bayesian Test for Equality of Means in High Dimensions
Roger S. Zoh,
Abhra Sarkar,
Raymond J. Carroll and
Bani K. Mallick
Journal of the American Statistical Association, 2018, vol. 113, issue 524, 1733-1741
Abstract:
We develop a Bayes factor-based testing procedure for comparing two population means in high-dimensional settings. In ‘large-p-small-n” settings, Bayes factors based on proper priors require eliciting a large and complex p × p covariance matrix, whereas Bayes factors based on Jeffrey’s prior suffer the same impediment as the classical Hotelling T2 test statistic as they involve inversion of ill-formed sample covariance matrices. To circumvent this limitation, we propose that the Bayes factor be based on lower dimensional random projections of the high-dimensional data vectors. We choose the prior under the alternative to maximize the power of the test for a fixed threshold level, yielding a restricted most powerful Bayesian test (RMPBT). The final test statistic is based on the ensemble of Bayes factors corresponding to multiple replications of randomly projected data. We show that the test is unbiased and, under mild conditions, is also locally consistent. We demonstrate the efficacy of the approach through simulated and real data examples. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1371024 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1733-1741
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1371024
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().