Simulation-Based Bias Correction Methods for Complex Models
Stéphane Guerrier,
Elise Dupuis-Lozeron,
Yanyuan Ma and
Maria-Pia Victoria-Feser ()
Journal of the American Statistical Association, 2019, vol. 114, issue 525, 146-157
Abstract:
Along with the ever increasing data size and model complexity, an important challenge frequently encountered in constructing new estimators or in implementing a classical one such as the maximum likelihood estimator, is the computational aspect of the estimation procedure. To carry out estimation, approximate methods such as pseudo-likelihood functions or approximated estimating equations are increasingly used in practice as these methods are typically easier to implement numerically although they can lead to inconsistent and/or biased estimators. In this context, we extend and provide refinements on the known bias correction properties of two simulation-based methods, respectively, indirect inference and bootstrap, each with two alternatives. These results allow one to build a framework defining simulation-based estimators that can be implemented for complex models. Indeed, based on a biased or even inconsistent estimator, several simulation-based methods can be used to define new estimators that are both consistent and with reduced finite sample bias. This framework includes the classical method of the indirect inference for bias correction without requiring specification of an auxiliary model. We demonstrate the equivalence between one version of the indirect inference and the iterative bootstrap, both correct sample biases up to the order n− 3. The iterative method can be thought of as a computationally efficient algorithm to solve the optimization problem of the indirect inference. Our results provide different tools to correct the asymptotic as well as finite sample biases of estimators and give insight on which method should be applied for the problem at hand. The usefulness of the proposed approach is illustrated with the estimation of robust income distributions and generalized linear latent variable models. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1380031 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:525:p:146-157
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1380031
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().