EconPapers    
Economics at your fingertips  
 

Matrix Completion With Covariate Information

Xiaojun Mao, Song Chen and Raymond K. W. Wong

Journal of the American Statistical Association, 2019, vol. 114, issue 525, 198-210

Abstract: This article investigates the problem of matrix completion from the corrupted data, when the additional covariates are available. Despite being seldomly considered in the matrix completion literature, these covariates often provide valuable information for completing the unobserved entries of the high-dimensional target matrix A0. Given a covariate matrix X with its rows representing the row covariates of A0, we consider a column-space-decomposition model A0 = Xβ0 + B0, where β0 is a coefficient matrix and B0 is a low-rank matrix orthogonal to X in terms of column space. This model facilitates a clear separation between the interpretable covariate effects (Xβ0) and the flexible hidden factor effects (B0). Besides, our work allows the probabilities of observation to depend on the covariate matrix, and hence a missing-at-random mechanism is permitted. We propose a novel penalized estimator for A0 by utilizing both Frobenius-norm and nuclear-norm regularizations with an efficient and scalable algorithm. Asymptotic convergence rates of the proposed estimators are studied. The empirical performance of the proposed methodology is illustrated via both numerical experiments and a real data application.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1389740 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:525:p:198-210

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1389740

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:198-210