EconPapers    
Economics at your fingertips  
 

Functional Graphical Models

Xinghao Qiao, Shaojun Guo and Gareth M. James

Journal of the American Statistical Association, 2019, vol. 114, issue 525, 211-222

Abstract: Graphical models have attracted increasing attention in recent years, especially in settings involving high-dimensional data. In particular, Gaussian graphical models are used to model the conditional dependence structure among multiple Gaussian random variables. As a result of its computational efficiency, the graphical lasso (glasso) has become one of the most popular approaches for fitting high-dimensional graphical models. In this paper, we extend the graphical models concept to model the conditional dependence structure among p random functions. In this setting, not only is p large, but each function is itself a high-dimensional object, posing an additional level of statistical and computational complexity. We develop an extension of the glasso criterion (fglasso), which estimates the functional graphical model by imposing a block sparsity constraint on the precision matrix, via a group lasso penalty. The fglasso criterion can be optimized using an efficient block coordinate descent algorithm. We establish the concentration inequalities of the estimates, which guarantee the desirable graph support recovery property, that is, with probability tending to one, the fglasso will correctly identify the true conditional dependence structure. Finally, we show that the fglasso significantly outperforms possible competing methods through both simulations and an analysis of a real-world electroencephalography dataset comparing alcoholic and nonalcoholic patients.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1390466 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:525:p:211-222

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1390466

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:211-222