A Computational Framework for Multivariate Convex Regression and Its Variants
Rahul Mazumder,
Arkopal Choudhury,
Garud Iyengar and
Bodhisattva Sen
Journal of the American Statistical Association, 2019, vol. 114, issue 525, 318-331
Abstract:
We study the nonparametric least squares estimator (LSE) of a multivariate convex regression function. The LSE, given as the solution to a quadratic program with O(n2) linear constraints (n being the sample size), is difficult to compute for large problems. Exploiting problem specific structure, we propose a scalable algorithmic framework based on the augmented Lagrangian method to compute the LSE. We develop a novel approach to obtain smooth convex approximations to the fitted (piecewise affine) convex LSE and provide formal bounds on the quality of approximation. When the number of samples is not too large compared to the dimension of the predictor, we propose a regularization scheme—Lipschitz convex regression—where we constrain the norm of the subgradients, and study the rates of convergence of the obtained LSE. Our algorithmic framework is simple and flexible and can be easily adapted to handle variants: estimation of a nondecreasing/nonincreasing convex/concave (with or without a Lipschitz bound) function. We perform numerical studies illustrating the scalability of the proposed algorithm—on some instances our proposal leads to more than a 10,000-fold improvement in runtime when compared to off-the-shelf interior point solvers for problems with n = 500.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1407771 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:525:p:318-331
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1407771
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().