Linear Non-Gaussian Component Analysis Via Maximum Likelihood
Benjamin B. Risk,
David S. Matteson and
David Ruppert
Journal of the American Statistical Association, 2019, vol. 114, issue 525, 332-343
Abstract:
Independent component analysis (ICA) is popular in many applications, including cognitive neuroscience and signal processing. Due to computational constraints, principal component analysis (PCA) is used for dimension reduction prior to ICA (PCA+ICA), which could remove important information. The problem is that interesting independent components (ICs) could be mixed in several principal components that are discarded and then these ICs cannot be recovered. We formulate a linear non-Gaussian component model with Gaussian noise components. To estimate the model parameters, we propose likelihood component analysis (LCA), in which dimension reduction and latent variable estimation are achieved simultaneously. Our method orders components by their marginal likelihood rather than ordering components by variance as in PCA. We present a parametric LCA using the logistic density and a semiparametric LCA using tilted Gaussians with cubic B-splines. Our algorithm is scalable to datasets common in applications (e.g., hundreds of thousands of observations across hundreds of variables with dozens of latent components). In simulations, latent components are recovered that are discarded by PCA+ICA methods. We apply our method to multivariate data and demonstrate that LCA is a useful data visualization and dimension reduction tool that reveals features not apparent from PCA or PCA+ICA. We also apply our method to a functional magnetic resonance imaging experiment from the Human Connectome Project and identify artifacts missed by PCA+ICA. We present theoretical results on identifiability of the linear non-Gaussian component model and consistency of LCA. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1407772 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:525:p:332-343
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1407772
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().