Partially Linear Functional Additive Models for Multivariate Functional Data
Raymond K. W. Wong,
Yehua Li and
Zhengyuan Zhu
Journal of the American Statistical Association, 2019, vol. 114, issue 525, 406-418
Abstract:
We investigate a class of partially linear functional additive models (PLFAM) that predicts a scalar response by both parametric effects of a multivariate predictor and nonparametric effects of a multivariate functional predictor. We jointly model multiple functional predictors that are cross-correlated using multivariate functional principal component analysis (mFPCA), and model the nonparametric effects of the principal component scores as additive components in the PLFAM. To address the high-dimensional nature of functional data, we let the number of mFPCA components diverge to infinity with the sample size, and adopt the component selection and smoothing operator (COSSO) penalty to select relevant components and regularize the fitting. A fundamental difference between our framework and the existing high-dimensional additive models is that the mFPCA scores are estimated with error, and the magnitude of measurement error increases with the order of mFPCA. We establish the asymptotic convergence rate for our estimator, while allowing the number of components diverge. When the number of additive components is fixed, we also establish the asymptotic distribution for the partially linear coefficients. The practical performance of the proposed methods is illustrated via simulation studies and a crop yield prediction application. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1411268 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:525:p:406-418
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2017.1411268
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().