EconPapers    
Economics at your fingertips  
 

Adaptive Bayesian Time–Frequency Analysis of Multivariate Time Series

Zeda Li and Robert T. Krafty

Journal of the American Statistical Association, 2019, vol. 114, issue 525, 453-465

Abstract: This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelihood-based penalized spline models of modified Cholesky components, which provide flexible nonparametric estimates that preserve positive definite structures of spectral matrices. The approach is formulated in a Bayesian framework, in which the number and location of partitions are random, and relies on reversible jump Markov chain and Hamiltonian Monte Carlo methods that can adapt to the unknown number of segments and parameters. By averaging over the distribution of partitions, the approach can approximate both abrupt and slowly varying changes in spectral matrices. Empirical performance is evaluated in simulation studies and illustrated through analyses of electroencephalography during sleep and of the El Niño-Southern Oscillation. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1415908 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:525:p:453-465

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1415908

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:453-465