EconPapers    
Economics at your fingertips  
 

Nonparametric Rotations for Sphere-Sphere Regression

Marco Di Marzio, Agnese Panzera and Charles C. Taylor

Journal of the American Statistical Association, 2019, vol. 114, issue 525, 466-476

Abstract: Regression of data represented as points on a hypersphere has traditionally been treated using parametric families of transformations that include the simple rigid rotation as an important, special case. On the other hand, nonparametric methods have generally focused on modeling a scalar response through a spherical predictor by representing the regression function as a polynomial, leading to component-wise estimation of a spherical response. We propose a very flexible, simple regression model where for each location of the manifold a specific rotation matrix is to be estimated. To make this approach tractable, we assume continuity of the regression function that, in turn, allows for approximations of rotation matrices based on a series expansion. It is seen that the nonrigidity of our technique motivates an iterative estimation within a Newton–Raphson learning scheme, which exhibits bias reduction properties. Extensions to general shape matching are also outlined. Both simulations and real data are used to illustrate the results. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1421542 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:525:p:466-476

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1421542

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:466-476