Survivor-Complier Effects in the Presence of Selection on Treatment, With Application to a Study of Prompt ICU Admission
Edward H. Kennedy,
Steve Harris and
Luke J. Keele
Journal of the American Statistical Association, 2019, vol. 114, issue 525, 93-104
Abstract:
Pretreatment selection or censoring (“selection on treatment”) can occur when two treatment levels are compared ignoring the third option of neither treatment, in “censoring by death” settings where treatment is only defined for those who survive long enough to receive it, or in general in studies where the treatment is only defined for a subset of the population. Unfortunately, the standard instrumental variable (IV) estimand is not defined in the presence of such selection, so we consider estimating a new survivor-complier causal effect. Although this effect is generally not identified under standard IV assumptions, it is possible to construct sharp bounds. We derive these bounds and give a corresponding data-driven sensitivity analysis, along with nonparametric yet efficient estimation methods. Importantly, our approach allows for high-dimensional confounding adjustment, and valid inference even after employing machine learning. Incorporating covariates can tighten bounds dramatically, especially when they are strong predictors of the selection process. We apply the methods in a UK cohort study of critical care patients to examine the mortality effects of prompt admission to the intensive care unit, using ICU bed availability as an instrument. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1469990 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:525:p:93-104
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1469990
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().