Causal Interaction in Factorial Experiments: Application to Conjoint Analysis
Naoki Egami and
Kosuke Imai
Journal of the American Statistical Association, 2019, vol. 114, issue 526, 529-540
Abstract:
We study causal interaction in factorial experiments, in which several factors, each with multiple levels, are randomized to form a large number of possible treatment combinations. Examples of such experiments include conjoint analysis, which is often used by social scientists to analyze multidimensional preferences in a population. To characterize the structure of causal interaction in factorial experiments, we propose a new causal interaction effect, called the average marginal interaction effect (AMIE). Unlike the conventional interaction effect, the relative magnitude of the AMIE does not depend on the choice of baseline conditions, making its interpretation intuitive even for higher-order interactions. We show that the AMIE can be nonparametrically estimated using ANOVA regression with weighted zero-sum constraints. Because the AMIEs are invariant to the choice of baseline conditions, we directly regularize them by collapsing levels and selecting factors within a penalized ANOVA framework. This regularized estimation procedure reduces false discovery rate and further facilitates interpretation. Finally, we apply the proposed methodology to the conjoint analysis of ethnic voting behavior in Africa and find clear patterns of causal interaction between politicians’ ethnicity and their prior records. The proposed methodology is implemented in an open source software package. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1476246 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:526:p:529-540
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1476246
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().