EconPapers    
Economics at your fingertips  
 

Bayesian Semiparametric Estimation of Cancer-Specific Age-at-Onset Penetrance With Application to Li-Fraumeni Syndrome

Seung Jun Shin, Ying Yuan, Louise C. Strong, Jasmina Bojadzieva and Wenyi Wang

Journal of the American Statistical Association, 2019, vol. 114, issue 526, 541-552

Abstract: Penetrance, which plays a key role in genetic research, is defined as the proportion of individuals with the genetic variants (i.e., genotype) that cause a particular trait and who have clinical symptoms of the trait (i.e., phenotype). We propose a Bayesian semiparametric approach to estimate the cancer-specific age-at-onset penetrance in the presence of the competing risk of multiple cancers. We employ a Bayesian semiparametric competing risk model to model the duration until individuals in a high-risk group develop different cancers, and accommodate family data using family-wise likelihoods. We tackle the ascertainment bias arising when family data are collected through probands in a high-risk population in which disease cases are more likely to be observed. We apply the proposed method to a cohort of 186 families with Li-Fraumeni syndrome identified through probands with sarcoma treated at MD Anderson Cancer Center from 1944 to 1982. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1482749 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:526:p:541-552

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1482749

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-04-12
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:541-552