EconPapers    
Economics at your fingertips  
 

Parameter Estimation and Variable Selection for Big Systems of Linear Ordinary Differential Equations: A Matrix-Based Approach

Leqin Wu, Xing Qiu, Ya-xiang Yuan and Hulin Wu

Journal of the American Statistical Association, 2019, vol. 114, issue 526, 657-667

Abstract: Ordinary differential equations (ODEs) are widely used to model the dynamic behavior of a complex system. Parameter estimation and variable selection for a “Big System” with linear ODEs are very challenging due to the need of nonlinear optimization in an ultra-high dimensional parameter space. In this article, we develop a parameter estimation and variable selection method based on the ideas of similarity transformation and separable least squares (SLS). Simulation studies demonstrate that the proposed matrix-based SLS method could be used to estimate the coefficient matrix more accurately and perform variable selection for a linear ODE system with thousands of dimensions and millions of parameters much better than the direct least squares method and the vector-based two-stage method that are currently available. We applied this new method to two real datasets—a yeast cell cycle gene expression dataset with 30 dimensions and 930 unknown parameters and the Standard & Poor 1500 index stock price data with 1250 dimensions and 1,563,750 unknown parameters—to illustrate the utility and numerical performance of the proposed parameter estimation and variable selection method for big systems in practice. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2017.1423074 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:526:p:657-667

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2017.1423074

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:657-667