High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models
Satyajit Ghosh,
Kshitij Khare and
George Michailidis
Journal of the American Statistical Association, 2019, vol. 114, issue 526, 735-748
Abstract:
Vector autoregressive (VAR) models aim to capture linear temporal interdependencies among multiple time series. They have been widely used in macroeconomics and financial econometrics and more recently have found novel applications in functional genomics and neuroscience. These applications have also accentuated the need to investigate the behavior of the VAR model in a high-dimensional regime, which provides novel insights into the role of temporal dependence for regularized estimates of the model’s parameters. However, hardly anything is known regarding properties of the posterior distribution for Bayesian VAR models in such regimes. In this work, we consider a VAR model with two prior choices for the autoregressive coefficient matrix: a nonhierarchical matrix-normal prior and a hierarchical prior, which corresponds to an arbitrary scale mixture of normals. We establish posterior consistency for both these priors under standard regularity assumptions, when the dimension p of the VAR model grows with the sample size n (but still remains smaller than n). A special case corresponds to a shrinkage prior that introduces (group) sparsity in the columns of the model coefficient matrices. The performance of the model estimates are illustrated on synthetic and real macroeconomic datasets. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1437043 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:526:p:735-748
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1437043
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().