Statistical Inference in a Directed Network Model With Covariates
Ting Yan,
Binyan Jiang,
Stephen E. Fienberg and
Chenlei Leng
Journal of the American Statistical Association, 2019, vol. 114, issue 526, 857-868
Abstract:
Networks are often characterized by node heterogeneity for which nodes exhibit different degrees of interaction and link homophily for which nodes sharing common features tend to associate with each other. In this article, we rigorously study a directed network model that captures the former via node-specific parameterization and the latter by incorporating covariates. In particular, this model quantifies the extent of heterogeneity in terms of outgoingness and incomingness of each node by different parameters, thus allowing the number of heterogeneity parameters to be twice the number of nodes. We study the maximum likelihood estimation of the model and establish the uniform consistency and asymptotic normality of the resulting estimators. Numerical studies demonstrate our theoretical findings and two data analyses confirm the usefulness of our model. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1448829 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:526:p:857-868
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1448829
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().