EconPapers    
Economics at your fingertips  
 

Testing for Trends in High-Dimensional Time Series

Likai Chen and Wei Biao Wu

Journal of the American Statistical Association, 2019, vol. 114, issue 526, 869-881

Abstract: The article considers statistical inference for trends of high-dimensional time series. Based on a modified L2$\mathcal {L}^2$ distance between parametric and nonparametric trend estimators, we propose a de-diagonalized quadratic form test statistic for testing patterns on trends, such as linear, quadratic, or parallel forms. We develop an asymptotic theory for the test statistic. A Gaussian multiplier testing procedure is proposed and it has an improved finite sample performance. Our testing procedure is applied to a spatial temporal temperature data gathered from various locations across America. A simulation study is also presented to illustrate the performance of our testing method. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1456935 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:526:p:869-881

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1456935

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:869-881