EconPapers    
Economics at your fingertips  
 

A Cautionary Tale on Instrumental Calibration for the Treatment of Nonignorable Unit Nonresponse in Surveys

Éric Lesage, David Haziza and Xavier D’Haultfœuille
Authors registered in the RePEc Author Service: Xavier D'Haultfoeuille

Journal of the American Statistical Association, 2019, vol. 114, issue 526, 906-915

Abstract: Response rates have been steadily declining over the last decades, making survey estimates vulnerable to nonresponse bias. To reduce the potential bias, two weighting approaches are commonly used in National Statistical Offices: the one-step and the two-step approaches. In this article, we focus on the one-step approach, whereby the design weights are modified in a single step with two simultaneous goals in mind: reduce the nonresponse bias and ensure the consistency between survey estimates and known population totals. In particular, we examine the properties of instrumental calibration, a special case of the one-step approach that has received a lot of attention in the literature in recent years. Despite the rich literature on the topic, there remain some important gaps that this article aims to fill. First, we give a set of sufficient conditions required for establishing the consistency of instrumental calibration estimators. Also, we show that the latter may suffer from a large bias when some of these conditions are violated. Results from a simulation study support our findings. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1458619 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:526:p:906-915

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1458619

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:906-915