Calibration Concordance for Astronomical Instruments via Multiplicative Shrinkage
Yang Chen,
Xiao-Li Meng,
Xufei Wang,
David A. van Dyk,
Herman L. Marshall and
Vinay L. Kashyap
Journal of the American Statistical Association, 2019, vol. 114, issue 527, 1018-1037
Abstract:
Calibration data are often obtained by observing several well-understood objects simultaneously with multiple instruments, such as satellites for measuring astronomical sources. Analyzing such data and obtaining proper concordance among the instruments is challenging when the physical source models are not well understood, when there are uncertainties in “known” physical quantities, or when data quality varies in ways that cannot be fully quantified. Furthermore, the number of model parameters increases with both the number of instruments and the number of sources. Thus, concordance of the instruments requires careful modeling of the mean signals, the intrinsic source differences, and measurement errors. In this article, we propose a log-Normal model and a more general log-t model that respect the multiplicative nature of the mean signals via a half-variance adjustment, yet permit imperfections in the mean modeling to be absorbed by residual variances. We present analytical solutions in the form of power shrinkage in special cases and develop reliable Markov chain Monte Carlo algorithms for general cases, both of which are available in the Python module CalConcordance. We apply our method to several datasets including a combination of observations of active galactic nuclei (AGN) and spectral line emission from the supernova remnant E0102, obtained with a variety of X-ray telescopes such as Chandra, XMM- Newton, Suzaku, and Swift. The data are compiled by the International Astronomical Consortium for High Energy Calibration. We demonstrate that our method provides helpful and practical guidance for astrophysicists when adjusting for disagreements among instruments. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1528978 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1018-1037
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1528978
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().