EconPapers    
Economics at your fingertips  
 

Diagnosing Glaucoma Progression With Visual Field Data Using a Spatiotemporal Boundary Detection Method

Samuel I. Berchuck, Jean-Claude Mwanza and Joshua L. Warren

Journal of the American Statistical Association, 2019, vol. 114, issue 527, 1063-1074

Abstract: Diagnosing glaucoma progression is critical for limiting irreversible vision loss. A common method for assessing glaucoma progression uses a longitudinal series of visual fields (VFs) acquired at regular intervals. VF data are characterized by a complex spatiotemporal structure due to the data generating process and ocular anatomy. Thus, advanced statistical methods are needed to make clinical determinations regarding progression status. We introduce a spatiotemporal boundary detection model that allows the underlying anatomy of the optic disc to dictate the spatial structure of the VF data across time. We show that our new method provides novel insight into vision loss that improves diagnosis of glaucoma progression using data from the Vein Pulsation Study Trial in Glaucoma and the Lions Eye Institute trial registry. Simulations are presented, showing the proposed methodology is preferred over existing spatial methods for VF data. Supplementary materials for this article are available online and the method is implemented in the R package womblR.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1537911 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1063-1074

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1537911

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1063-1074