EconPapers    
Economics at your fingertips  
 

Limits to Human Life Span Through Extreme Value Theory

Jesson J. Einmahl, John Einmahl and Laurens de Haan

Journal of the American Statistical Association, 2019, vol. 114, issue 527, 1075-1080

Abstract: There is no scientific consensus on the fundamental question whether the probability distribution of the human life span has a finite endpoint or not and, if so, whether this upper limit changes over time. Our study uses a unique dataset of the ages at death—in days—of all (about 285,000) Dutch residents, born in the Netherlands, who died in the years 1986–2015 at a minimum age of 92 years and is based on extreme value theory, the coherent approach to research problems of this type. Unlike some other studies, we base our analysis on the configuration of thousands of mortality data of old people, not just the few oldest old. We find compelling statistical evidence that there is indeed an upper limit to the life span of men and to that of women for all the 30 years we consider and, moreover, that there are no indications of trends in these upper limits over the last 30 years, despite the fact that the number of people reaching high age (say 95 years) was almost tripling. We also present estimates for the endpoints, for the force of mortality at very high age, and for the so-called perseverance parameter. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1537912 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: Limits to Human Life Span Through Extreme Value Theory (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1075-1080

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1537912

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-04-04
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1075-1080