Minimax Estimation of the Volume of a Set Under the Rolling Ball Condition
Ery Arias-Castro,
Beatriz Pateiro-López and
Alberto Rodríguez-Casal
Journal of the American Statistical Association, 2019, vol. 114, issue 527, 1162-1173
Abstract:
We consider the problem of estimating the volume of a compact domain in a Euclidean space based on a uniform sample from the domain. We assume that the domain has a boundary with positive reach. We propose a data-splitting approach to correct the bias of the plug-in estimator based on the sample α-convex hull. We show that this simple estimator achieves a minimax lower bound that we derive. Some numerical experiments corroborate our theoretical findings. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1482751 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1162-1173
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1482751
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().