Toward Computerized Efficient Estimation in Infinite-Dimensional Models
Marco Carone,
Alexander R. Luedtke and
Mark J. van der Laan
Journal of the American Statistical Association, 2019, vol. 114, issue 527, 1174-1190
Abstract:
Despite the risk of misspecification they are tied to, parametric models continue to be used in statistical practice because they are simple and convenient to use. In particular, efficient estimation procedures in parametric models are easy to describe and implement. Unfortunately, the same cannot be said of semiparametric and nonparametric models. While the latter often reflect the level of available scientific knowledge more appropriately, performing efficient inference in these models is generally challenging. The efficient influence function is a key analytic object from which the construction of asymptotically efficient estimators can potentially be streamlined. However, the theoretical derivation of the efficient influence function requires specialized knowledge and is often a difficult task, even for experts. In this article, we present a novel representation of the efficient influence function and describe a numerical procedure for approximating its evaluation. The approach generalizes the nonparametric procedures of Frangakis et al. and Luedtke, Carone, and van der Laan to arbitrary models. We present theoretical results to support our proposal and illustrate the method in the context of several semiparametric problems. The proposed approach is an important step toward automating efficient estimation in general statistical models, thereby rendering more accessible the use of realistic models in statistical analyses. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1482752 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1174-1190
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1482752
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().