EconPapers    
Economics at your fingertips  
 

Skinny Gibbs: A Consistent and Scalable Gibbs Sampler for Model Selection

Naveen N. Narisetty, Juan Shen and Xuming He

Journal of the American Statistical Association, 2019, vol. 114, issue 527, 1205-1217

Abstract: We consider the computational and statistical issues for high-dimensional Bayesian model selection under the Gaussian spike and slab priors. To avoid large matrix computations needed in a standard Gibbs sampler, we propose a novel Gibbs sampler called “Skinny Gibbs” which is much more scalable to high-dimensional problems, both in memory and in computational efficiency. In particular, its computational complexity grows only linearly in p, the number of predictors, while retaining the property of strong model selection consistency even when p is much greater than the sample size n. The present article focuses on logistic regression due to its broad applicability as a representative member of the generalized linear models. We compare our proposed method with several leading variable selection methods through a simulation study to show that Skinny Gibbs has a strong performance as indicated by our theoretical work. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1482754 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1205-1217

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1482754

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1205-1217