Invariant Causal Prediction for Sequential Data
Niklas Pfister,
Peter Bühlmann and
Jonas Peters
Journal of the American Statistical Association, 2019, vol. 114, issue 527, 1264-1276
Abstract:
We investigate the problem of inferring the causal predictors of a response Y from a set of d explanatory variables (X1, …, Xd). Classical ordinary least-square regression includes all predictors that reduce the variance of Y. Using only the causal predictors instead leads to models that have the advantage of remaining invariant under interventions; loosely speaking they lead to invariance across different “environments” or “heterogeneity patterns.” More precisely, the conditional distribution of Y given its causal predictors is the same for all observations, provided that there are no interventions on Y. Recent work exploits such a stability to infer causal relations from data with different but known environments. We show that even without having knowledge of the environments or heterogeneity pattern, inferring causal relations is possible for time-ordered (or any other type of sequentially ordered) data. In particular, this allows detecting instantaneous causal relations in multivariate linear time series, which is usually not the case for Granger causality. Besides novel methodology, we provide statistical confidence bounds and asymptotic detection results for inferring causal predictors, and present an application to monetary policy in macroeconomics. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1491403 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1264-1276
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2018.1491403
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().