EconPapers    
Economics at your fingertips  
 

Covariate-Adjusted Tensor Classification in High Dimensions

Yuqing Pan, Qing Mai and Xin Zhang

Journal of the American Statistical Association, 2019, vol. 114, issue 527, 1305-1319

Abstract: In contemporary scientific research, it is often of great interest to predict a categorical response based on a high-dimensional tensor (i.e., multi-dimensional array) and additional covariates. Motivated by applications in science and engineering, we propose a comprehensive and interpretable discriminant analysis model, called the CATCH model (short for covariate-adjusted tensor classification in high-dimensions). The CATCH model efficiently integrates the covariates and the tensor to predict the categorical outcome. It also jointly explains the complicated relationships among the covariates, the tensor predictor, and the categorical response. The tensor structure is used to achieve easy interpretation and accurate prediction. To tackle the new computational and statistical challenges arising from the intimidating tensor dimensions, we propose a penalized approach to select a subset of the tensor predictor entries that affect classification after adjustment for the covariates. An efficient algorithm is developed to take advantage of the tensor structure in the penalized estimation. Theoretical results confirm that the proposed method achieves variable selection and prediction consistency, even when the tensor dimension is much larger than the sample size. The superior performance of our method over existing methods is demonstrated in extensive simulated and real data examples. Supplementary materials for this article are available online.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2018.1497500 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1305-1319

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2018.1497500

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1305-1319